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Effectiveness of extrapolation in calculating the electric capacities 
of polygons and polyhedra by SCM (surface charge method) is 
represented. In the case of a square, it is divided into I? small squares 
as treated by Maxwell (n=6). Empirically, extrapolation function of 
the form u, /n + oJn* +& (log n)/n +&( log rs,/n2 is found to give the 
best result with the accuracy of more than six decimal figures at n = 28. 
In conventional methods without extrapolation, forbiddingly large 
n = 1 O5 should be needed to obtain the same accuracy. Extrapolation 
without logarithmic terms (8, =p2=O) does not work well. Thus, 
extrapolation using a logarithmic series and successive refinement 
leads to both accurate solutions and a saving in computational time. 
The origin of logarithmic terms is studied. The result of a numerical 
experiment suggests that logarithmic terms are needed when there are 
sharp edges in the configuration. 0 1992 Academic Press. Inc. 

1. INTRODUCTION 

The surface charge method (SCM) has been applied 
to the calculation of electric capacities since Maxwell 
calculated the capacity of a square by dividing it into 36 
small squares [ 11. In SCM, the charge distribution on the 
surface of a conductor is calculated by dividing the surface 
into many small areas. Although SCM seems to be the most 
practical method to calculate capacities in the cases where 
analytical solutions are not known, a vast amount of 
numerical calculation is needed to obtain accurate values. 
Furthermore, it is usually difficult to estimate the 
magnitude of error. Much work has been done to find 
effective methods to obtain accurate values [24]. 

Recently, Hosoya et al. [S] developed an extrapolation 
technique to calculate inductances in three-dimensional 
circuit configurations. In their extrapolated surface current 
method, they divided the surface of a conductor into n small 
areas in which looping currents flow. In order to obtain an 
accurate inductance in the limit of II --* co, they resorted to 
extrapolation technique using the values calculated with 
finite values of n. 

In this paper, we apply extrapolation technique to 

SCM calculations of electric capacities of conductors. In 
Section 2, the formulation of the method is given. As an 
example, the capacity of a square is treated. Capacities of 
some polygons and a cube calculated in the same method 
are presented in Section 3. Problems of extrapolation 
functions are discussed in Section 4. In particular, two- 
dimensional cases are studied in order to see the 
relationship between the logarithmic terms in extrapolation 
functions and the existence of sharp edges in the system. 
Concluding remarks are given in Section 5. 

2. EXTRAPOLATED SURFACE 
CHARGE METHOD 

The calculation by the extrapolated SCM consists of two 
steps: SCM and extrapolation. The first step is the calcula- 
tion of the electric capacity by dividing the surface into 
many small parts. The second step is the derivation of 
the true capacity by extrapolating from the capacities 
calculated by SCM. 

2.1. The Surface Charge Method (SCM) 

The first step is similar to the method taken by Maxwell 
[ 11. In the case of a square, we divide a square into small 
equal squares. Certain charge distribution is assumed on 
each small square. Simultaneous linear equations are solved 
with respect to the charges on small squares so as to make 
the potential at the middle of each square equal to unity. 

In our actual calculation, we divided the square into (2~)’ 
squares as shown in Fig. 1. From symmetry consideration, 
we need to know the charges of only one of the four 
equivalent quarters of a square. We solved the equations 
for the charges qk, on the square of the kth row and fth line 
(1 dk, l<n) 

(1) 
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FIG. 1. Division of a square (2n = 6). 

where pliikl is the potential at the middle of the (ij ) th square 
due to the unit charge on the (kl)th square. We assumed 
uniform charge distribution on each small square. An 
explicit form of pijikI is given in Appendix A. 1, together with 
its derivation. The total charge is the approximate value of 
the capacity C, of the original square. Namely, 

cn=cq, 
i, i 

which, in the present case, reduces to 

(2) 

c,=4 i 
i= 1 

The approximate capacities 
1 6 n d 16 are plotted in Fig. 2. 

2.2. The Extrapolation 

i qi, 
j= 1 

C, thus calculated for 

In the second step of the extrapolated SCM, we derive 
the true capacity C = lim, _ cc C, from the calculated C,‘s. 
The extrapolation technique is essentially similar to that 
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FIG. 2. Electric capacities C, of a square with its sides of 1 m 

calculated by the SCM by dividing it into (2n)* small equal squares. The 
dashed line shows the value obtained by extrapolation (n + co). 
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FIG. 3. The values of log AC, plotted as a function of log n. 
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taken by Hosoya et al. [S]. Namely, we calculate 
C, =lim,,, C(n) by assuming an extrapolation function 
C(n) of n and requiring that C(n) = C, at calculated points 
of n. 

In order to look at the gross behavior of C,, we plot 
log IdC, 1 z log (K(n)/&1 as a function of log n in Fig. 3, 
where the difference operation d is defined as df(n)= 
f(n) -f(n - 1) for any function j(n) of n. As seen in the 
figure, the points are almost connected by a straight line, 
which suggests that dC(n)/dn is approximated by some 
power of n. Since the gradient is about -2, we see that the 
leading n-dependent part of C(n) should be proportional to 
l/n, and we expect that it is improved by including higher- 
order in l/n. 

Taking a polynomial in l/n, 

C(n) = C, + f Ri-$ 
i= I 

(4) 

we calculated C, from the C,, C, ~, , . . . . C, Pk by sub- 
stituting them for C(n), C(n - l), . . . . C(n - k): 

C m z C:)(n) =A Ak(nkC,). (5) 

The derivation of Eq. (5) and some related formulas are 
given in Appendix B.1. If we take k = 3 and n = 16, for 
example, and use C,, = 40.38265752524515 pF, C,5 = 
40.35484913286501 pF, C,, =40.32315569495833 pF, and 
Cl, = 40.28669931627749 pF, we have C, = 40.80951 pF. 
Other parameters in Eq. (4) are a, = -6.9914 pF, 
a2 = 2.828 pF, CL~ = -3.83 pF, which indicate that the 
n-dependent part is actually dominated by ct, /n. 

If C, is completely represented by a polynomial of 
kth degree in l/n, C(,“‘(n) should be independent of n. The 
plotted curves, however, show some deviation from 
constant. In order to magnify the deviation, in Fig. 4 we 
plot the values of log Ak+ ‘(nkC,) zlog[k! AC:)(n)] as a 
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FIG. 4. The values of log(dk + ‘(nkC,)) (Eq. (5)) plotted as a function 
oflogn,fork=1,2,3,and4. 

function of log n, for k = 1, 2, 3, and 4. As seen in the figure, 
the points for each k are connected by an almost straight 
line. This fact implies that the error is well approximated by 
a term proportional to a certain power of l/n. Assuming 
that the error is given by y/n” where y and x are constants, 
we have 

Therefore, the gradient of log Jdkf ‘(nkC,)I is -(x+ 1). 
The magnitude of error in Cc,k)(n) by Eq. (5) can be 
estimated to be 

E= IC-C$(n)l r; tLlk+ynkcn) ) (7) . I 

where C is the exact capacity. 
When k is increased, however, the gradient of the curve 

stays around -3 even when k is increased, i.e., the con- 
vergence is not improved by taking higher-order terms in 
Eq. (4). As explained in Appendix B.3, this suggests the lack 
of logarithmic terms in the assumed extrapolation function 
(may be called “the logarithmic syndrome”). We therefore 
try an extrapolation function with logarithmic terms. In this 
case, the extrapolation function can be written as 

(81 

The approximate value of the extrapolated capacity C, 
determined from C,, C, , , . . . . C, ~ 2k is (see Appendix B.2) 

c 1 
2 z C(,“‘(n) = (k!)2 dk(nkdk(nkC,)). 

t I 1 

1 2 
log n 

FIG. 5. The values of log(dk+‘(nkdk(nkC,))) (Eq. (9)) plotted as a 
function of log n for k = I, 2, 3, and 4. 

To estimate the magnitude of errors, we plot 
log(dk+‘(nkdk(nkC,)) z log[(k!)’ dCz)(n)] against log n 
in Fig. 5, for k = 1, 2, 3, and 4. Assuming the error term of 
the form y/d, we have 

/!lk+‘(nkdk(nkC,)) = - r(;;xr~k;2iJ+ (10) 

Thus we can estimate the error by 

1 
=(k!)Z x 

2 AkC ‘(nkdk(nkC,)) . (11) 

The irregular behaviour seen at il B 15 in Fig. 5 can be 
attributed to the round-off error in numerical computation. 
Irregularity is also seen at the smaller side of n. This may 
reflect some effects of discrete approximation. We throw 
away these irregular parts and take smooth parts only. As 
seen in this figure, the gradient is steepest in the curve with 
k = 4. The curve with k = 3 is less steep than that with k = 2. 
Although the part of n d 14 of the curve with k = 4 looks all 
right, the behaviour around n = 13 is somewhat irregular. 
To be on the safe side, we adopt the point with n = 14 
(division into 28 x 28 squares) on the curve fork = 2. In this 
case, the gradient of log [dC’k’(n)j is around -8, so that 
the error term is proportional to l/n7 and the error is 
estimated to be E z 2 x lo-’ pF. The corresponding value of 
the extrapolated capacity C, is 40.81083 pF by Eq. (9), 
with an error estimate of 5 x 10P5%. 

The capacity obtained in the present work is comparable 
to 40.48 pF by Maxwell [ 1 ] and 40.58 pF by Ruehli et al. 
[Z]. If extrapolation were not applied, the accuracy of 
E z 2 x 10 ’ pF would be attained only by the division of as 
large as nz Ix,/&1 z 3.5 x 105. 

We have also tried extrapolation functions with terms like 
l/nil2 though we have not seen remarkable improvement. 
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2.3. The Extrapolated SCM 

In the following, we summarize the procedure to calculate 
capacities by the extrapolated SCM. 

(i) Devise a scheme of dividing the surface of the 
conductor into many squares or triangles. Introduce a 
parameter n so that the length of the edges of each small 
square or triangle is proportional to (l/n) and so that the 
way of division is definitely determined when n is given. 

(ii) Calculate the capacities C,, by the SCM for 
n = 1, 2, . ..) up to a reasonably large value of n. 

(iii) Plot log Idk+ ‘(nkCII)l versus log n for k= 1, then 
k = 2, and so on. Take the smooth part of the plot. If the 
points show irregular behavior, consider it as originating 
from the round-off error, or as n being too small, and throw 
away these parts. If the gradient gets steeper with increasing 
k, then adopt as the capacity the values of Cg)(n) by Eq. (5) 
with k and n by which the error estimate is smallest. The 
errors can be estimated from the plot of log ldk+ ‘(nkC,)I 
using Eq. (7). 

(iv) If the gradient of log (dk+‘(nkC,,)I does not get 
steeper even when k is increased (“the logarithmic syn- 
drome”), then plot log Id“+ ‘(nkdk(nkC,))l versus log n for 
successively larger k as long as the curve does not show an 
irregular behavior. Adopt as the capacity the value of 
C:)(n) calculated by Eq. (9) with k and n by which the 
error estimate is smallest. The errors can be estimated from 
the plot of log Idk+ ‘(nkd”(nkC,))j using Eq. (11). 

So far, we have treated only conductors which are 
constructed by flat surfaces and straight lines only. The 
application of the method to those conductors which have 
smoothly curved surfaces can be made by taking some 
points on the surface and approximating the curved surfaces 
by sets of flat surfaces determined by these points. If the 
system has multiple scale length, first divide the conductors 
into a number of rectangles and/or triangles, each of which 
has a consistent scale. Then, sub-divide each part into n2 
small sections. 

The extrapolated SCM can also be applied to the systems 
with multiple conductors. Namely, to calculate capacity 
coefficients C,], (1 < fl< N) of the ccth conductor 
(1 <cc < N) of an N-conductor system, divide the surface 
of each conductor into n x n squares (or triangles). Then 
solve the following set of equations for the charges 
c/k/(8): c Pij(cc’);kl(B)qkl(B) = ii,., for 1 < CI’ d N, where pij(lsl;klcBj 
is the potential at the middle of the (ij)th square on the sur- 
face of the ct’th conductor due to unit charge at the (kZ)th 
square on the surface of the p th conductor. The capacity 
coefficient can be calculated by C,, = xii qiic8). In some 
multi-conductor systems, the potential is defined relative to 
one of the conductors that surrounds all the others. Some 
examples of such a case are treated in Section 4. 

(a) (b) 

FIG. 6. Division of (a) a pentagon and (b) a cube. The line full lines 
show the initial division of the surface, while the dashed lines show the 
sub-division for n = 2. 

3. EXAMPLES OF APPLICATION 

Capacities of other polygons can be calculated by 
dividing them into equal triangles. In this way, we have 
calculated the capacities of an equilateral triangle, a square, 
an equilateral pentagon, an equilateral hexagon, an equi- 
lateral heptagon, and an equilateral octagon up to seven 
decimal digits by dividing them into small triangles. The 
division of a pentagon is shown in Fig. 6a as an example. 
The results are summarized in Table I. Note that the 
capacity is approaching that of a unit circle for which the 
exact value is known to be C = 8~ z 70.83350 pF. 

We also calculated the capacity of a cube by dividing each 
surface into (2n)’ equal squares as shown in Fig. 6b. The 
result is included in Table I. The obtained value is close to 
the lower bound 72.9 pF set by Reitan et al. [4]. The 
application to other polygons and polyhedra are 
straightforward. 

Table I may be used for benchmark tests of various 
approximation methods. We hope that the capacities 
tabulated here will be used to test the accuracy of various 
approximation techniques such as those used in the finite 
element method. 

TABLE I 

The Capacities of Equilateral Polygons Which Internally Touch 
a Circle with a Radius of 1 m, and the Capacity of a Cube with 
Edge of 1 m Calculated by the Extrapolated SCM 

Shape C, (PF) Relative error 

Triangle 48.34699 

Square 57.71519 
Pentagon 62.24622 

Hexagon 64.78146 

Heptagon 66.34090 
Octagon 67.36759 
Cube 73.50997 

1 X 10rn6 
3x10-6 

2x 10m6 
8 x lo-’ 
2 x lo-’ 
I x lo-’ 
8 x lo-’ 
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4. DISCUSSION 

Based on a conjecture that the logarithmic terms in 
extrapolation functions may be related to singularities in 
charge distribution at sharp edges, we made a numerical 
experiment on conductors with and without sharp edges. 

For simplicity, we tried it in two dimensions. The example 
is the capacity of an infinitely-long right m-prism located 
parallel to an infinitely-long right circular cylinder which 
has the same central axis with the prism. Figure 7 explains 
the cross section of that configuration. The radius of the 
cylinder is rz, while the prism has the size to inscribe a 
circular cylinder of a radius r , . The system is infinitely long 
in the direction perpendicular to this plane. Figures 8 and 9 
show two cases of this system (m = 6). In the configuration 
of Fig. 8, a hexagonal prism is placed in a circular cylinder. 
In this case, the prism has sharp edges at the outer corners. 
In Fig. 9, on the other hand, a hexagonal prism surrounds 
a circular cylinder, where the edges are at the inner corners 
so that the angles are larger than 7~. In these two cases, the 
conductors have sharp edges. When m --f co, these m-prisms 
turn out to be circular cylinders, as shown in Fig. 10. This 
is an example which does not have any sharp edges. 

In two-dimensional cases, the potential is defined relative 
to the other conductor. Let qii be the charge per unit length 
on the m-prism (i = 1) or on the cylinder (i = 2). Equations 
(1) are modified to the following 2n + 1 equations for qij 
( 1 < i d 2, 1 d j d n) and the potential P. We solve 

2 n 
c c Pli;k,qkl=P+ 1 for ldidn, 

ki, ,=, 

t i P2iiklqk,= P for 16idn, 
k=l /=I 

2 ?1 

(12) 

,c, ,c, qk’= O7 

FIG. 7. The definition of the points used in the calculation of the 
capacities of the systems shown in Figs. 8,9, and 10. The points S,, are the 
source points, while the points P, are the held points. The present figure 
corresponds to the case of Fig. 8. 

k=l 
z 

(b) 

1 2 3 
log n 

FIG. 8. The figure shows (a) log(d’+ I@%,)) and (b) 
log(dk + ‘(nkAk(nkC,))) for k = 1,2, 3, and 4 plotted as a function of log n. 
The values of C, are calculated by SCM for the system where a hexagonal 
prism (r, = 1) is surrounded by a circular cylinder (rz = 2) as shown in the 
upper-right part of the figure. 

where pijik, stands for the potential at the field point (ij) due 
to the unit charge density of line charge at the source point 
(kl). The explicit forms ofp,,,,, are given in Appendix C. The 
electric capacity per unit length is obtained by summing up 
the charges on the prism: 

C=2m i qln. 
i=l 

(13) 

Figure 8 shows the case where a hexagonal prism 
(rl = 1 m) is in a circular cylinder (r2 = 2 m). The values of 
log ldk+‘(nkC,)I are plotted in (a) for k = 1, 2, 3, and 4. 
The gradients for k = 2, 3, and 4 almost stay around - 3, 
indicating “the logarithmic syndrome.” The quantities 
log lk+ ‘(nkdk(nkC,))I are plotted in (b). In this case, on 
the other hand, the gradient is generally increasing from 
around -2 for k = 1 to around - 12 for k = 4, except for 
some irregularity around n = 10. The estimated error at 
n = 16 for k = 4 by polynomial extrapolation function is 
about 130 times larger than that by the extrapolation func- 
tion with logarithmic terms. This fact also supports the 
necessity of logarithmic terms. 

Figure 9 shows the situation where a cylinder (rz = 1 m) 
is surrounded by a hexagonal prism (rl = 2 m). This situa- 
tion is different from the previous one in the point that this 
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FIG. 9. The ligure shows (a) log(dk+‘(nkC,)) and (b) FIG. 10. The figure shows (a) log(dk+‘(nkC,)) and (b) 
log(dk+‘(nkdk(nkC,))) for k = 1, 2, 3, and 4 plotted as a function of log n. log(d k+‘(~kdk(nkC,,))) for k = 1, 2, 3, and 4 plotted as a function of log n. 
The values of C, are calculated by SCM for the system where a circular The values of C, are calculated by SCM for the system where a circular 
cylinder (rz = 1) is surrounded by a hexagonal prism (rr = 2) as shown in cylinder (r, = 1) is surrounded by another circular cylinder (r2 = 2) as 
the upper-right part of the figure. shown in the upper-right part of the figure. 

conductor has edges at the outer corners while the previous 
conductors had edges at the inner corners. The result of the 
calculation is, however, similar to the previous one. By the 
polynomial extrapolation functions (Fig. 9a), the gradient 
of log IdCz’(n)l does not become steep enough, while by 
the extrapolation functions with logarithmic terms (Fig. 9b) 
the gradient of log IdC$‘(n)l becomes steep enough with 
increasing k. This means that logarithmic terms are needed 
in the extrapolation function. 

For comparison with the above two cases with edges, we 
calculated the capacity between two circular cylinders. The 
smaller one has a radius of 1 m, while the large one has a 
radius of 2 m. In this case, there is no sharp edge. Dividing 
the surface of each cylinder into 12n equivalent parts, we 
calculated the capacity assuming a line charge of q and -q 
per unit length in the middle of each arc and determined q 
so as to make the potential difference between the two cylin- 
ders equal to unity. The values of log ILI“+‘(~~C,)I are 
plotted in Fig. 10a for k = 1, 2, 3, and 4. It is seen that the 
gradient becomes steeper from about - 3.5 (k = 1) to about 
- 8.5 (k = 4). This tendency implies that the polynomial 
form is a reasonable approximation to C(n). Incidentally, 
the extrapolated value at n = 16 for k = 4 (C/27x, = 
1.4426950413 &- 0.0000000004) is very close to the exact 
value: C/2xs, = l/log 2 z 1.4426950409. 

Comparing the results, we see that the extrapolation func- 
tions without logarithmic terms do not work well when 
there are edges. This is observed for either outer or inner 
corners whenever the conductors have sharp edges. On the 
other hand, polynomial form seems to be valid for 
extrapolation functions if all parts are smooth. The 
occurrence of logarithmic terms might be related to the 
singularities in charge distribution at sharp edges. Further 
pursuit of this problem, however, will be a theme of future 
study. 

5. CONCLUDING REMARKS 

We have presented the extrapolated SCM and obtained 
the capacity of a square with its sides of 1 m to be 
40.81083 f 0.00002 pF. The extrapolation reduces the com- 
putation a great deal. If we divide a square into n2 small 
squares, the number of elements of the simultaneous equa- 
tion, i.e., the size of the matrix, is of the order of O(n’). Thus 
the number of matrix elements is O(n4), and the amount of 
computation for solving the equation is 0(n6). As we have 
seen, the magnitude or error is 0( l/n) if no extrapolation is 
made. Thus the order of 0(&s’) amount of computation is 
needed to make E small. In the proposed method, on the 



CAPACITY CALCULATION BY SCM 111 

other hand, the error is O(n-*), so that only O(E-~‘*) APPENDIX A: POTENTIAL BY UNIFORM 

computation is needed to obtain the same accuracy. More CHARGE ON A SURFACE 

quantitative estimation shows that the present result of the 
capacity of a square with n = 14 is almost equivalent to A.1. &Pare 
n % 10’ without extrapolation. Although errors cannot be 
easily estimated in many cases by the usual methods, by 

The potential produced by uniformly distributed charge q 

using extrapolation, error can be estimated easily. 
on a rectangle made from points (x,, y,), (x, , y2), (x,, y,), 

The extrapolation technique for calculating capacities 
and (x,, vz) on the x-y plane is given by 

can be applied, in principle, to other methods if they involve 1 
a certain parameter “n” by which exact capacity is obtained v=- 4 

in the limit of n + co. For example, the present method, 47%(X?--,)(Yz-Yl) 

1) 

I 

SCM, belongs to the method of moments by appropriately xJ(X y,zx,,Y,;x,,Y,), (A. 
selecting the set of basic functions. In more general cases, 
the extrapolation technique can be used, making “n” the where 471~~ = 103/2.9979245g2 pF/m % 111.265006 pF/m, 
number of trial functions. The surface solvers as used in the is the surface integral, 
present work will be more appropriate than volume solvers, 
since surface division (n’) has elements less than volume I(X K z XI 9 y,; x2, L(2) 

division (n’). The advantage of using extrapolation is that rl rm Pt.7 1 
not much accuracy is required in “direct” calculated results 
by finite values of n. Therefore, elaboration in determining 
the grid distribution is not needed. In particular, in many of 
other works on techniques in this kind of computation, 
special treatment is made near the edge in order to obtain 
better accuracy by small numbers of divisions [2, 31. Since 
we are deriving the value at n + cc by extrapolation, the 
values with finite divisions need not be very near to the true 
capacity. Rather, such irregular treatment might give rise to 
irregular behavior of C, which we would like to avoid. 

A drawback of the present method is that the true 
extrapolation function is not known. From the results of 
Section 4, we may consider that the necessity of logarithmic 
terms is closely related to the existence of sharp edges. This 
argument is, however, based only on the results of very few 
cases, and there seems to be no theory to justify it yet. As the 
extrapolation function, we tried fractional powers of n to 
some extent, and it seemed that they are not essential. We 
have not studied, however, terms like (log r~)~/n~, nor 
oscillating functions such as sin(an)/&. The form of 
extrapolation functions is an open problem. It is desired 
that the study of extrapolation be made in the near future, 
both numerically and analytically. 

To summarize, we have presented the extrapolated sur- 
face charge method as a practical method to obtain accurate 
electric capacities economically. We have observed the effec- 
tiveness of extrapolation which enables one to calculate 
capacities to the accuracy where usual methods without 
extrapolation cannot reach. The magnitude of error can be 
estimated easily. One interesting subject for future study is 
the form of extrapolation functions, especially, the rela- 
tionship among logarithmic terms, singularities in charge 
distribution, and sharp edges in the configuration. It is 
desired that the study of extrapolation functions be made. 

Finally, we express our gratitude to Mr. J. Uchikawa and 
Mr. N. Kurita for their help in computing. 

zzz J ,dS=j 
r, 
ydxdy, 

.),I r 
(A.2) 

and r is the distance between the source point S(x, y, 0) and 
the field point P(X, Y, Z): 

r=[(x-X)2+(Y-y)2+z2]'/2. (A.3) 

This integral can be calculated from the indefinite integral, 

ss 5 dx dy = F(X, Y, Z; x, y) 

= x log(r + y) + y log(r + x), (A.4) 

resulting in 

1(X Y z XI, Y, ; x2, Y2) 

=F(X y,zx,,Y,)--F(x Y,Zx,,y,) 

-F(X, Y,Z;x,,yd+F(X, Y,Z;x,,y,). (A.5) 

Now, we come to the case of the square of Fig. 1. We have 
the coefficient pijik, in Eq. (1) as 

Ptj;kl = ‘iJ:kl + Oij:k,Zn + 1 I 

+vo:2”~I~k.I+vi,:2n+l~k,2n+l I 

for 1 d i, j, k, 1 d n, (‘4.6) 

where 

1 1 
V;,;k, = - - 

471&O (2n)2 

k-l f-l k I -,o;- -._ - 
2n ’ 2n ‘2n’2n ’ (A.7) 
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In Eq. (A.6), the contributions from three squares 
(k, 2n+ 1 -I), (2n+ 1 -k, Z), and (2n- 1 -k, 2n+ l-1) 
are included, in addition to that from (k, I). 

A.2. Triangle 

The potential produced by the uniformly distributed 
charge on the triangle AABC as shown in Fig. 11 is derived 
as follows: Although we are presently concerned with the 
cases where field points and source points are all in the same 
plane, we consider a more general case where the field point 
is not necessarily in the plane of the triangle. The potential 
is given by 

1 9 v=-- 
47LE, AABC ” (A.81 

where Z is the integral by the source point S over the surface 
of the triangle, 

I= 
s 

L dS, 
AABC r 

(A.91 

r being the distance between S and the field point P. This 
integral can be calculated by taking the sum (or the dif- 
ference) of those over three triangles, 

where 

q(u) = IR,u + Qc I’, 
o=(Q,xR,).n, 

(A.131 

h is the distance between P and G, and n is the unit vector 
in the direction of the vector (A, x B,). Note that the 
magnitude of (T is twice the area of the triangle QRG, while 
its sign is positive (negative) if the direction of the loop 
GQR is the same as (opposite to) that of loop ABC. After 
integrating over a, we have 

I AQRG = 1, - 10, (A.14) 

where 

lo-oh ‘dul 
I 0 4(u)’ 

(A.15) 

and 

I, = 0 
s 

1 du Cdu) + h21 I” (A.16) 
0 4(u) . 

The integral I, can be separated into two integrals, 
Z=fZ +z +z AABG- ABCG - ACAG, (A.lO) 

z,=z*+z,, (A.17) 
where G is the foot of P on the plane of AABC. Now, we 
calculate ZAaRG for QR = AB, BC, or CA. In the following, 
we shall use Y, to denote the vector from a point X to a 
point Y. The coordinate (u, u) defined as 

S, = uQG + uvRa 

is convenient for evaluating the integral 
AQRG. The integral becomes 

(A.1 1) 

over the triangle 

1 

s s 

I 
I!IIAQRG= du v dv 

0 0 
[q(u) u2°+ h2,‘,2’ (A’12) 

B(R) 

FIG. 11. The calculation of the potential at the point P due to uniform 
charge on the triangle ABC. The point G shows the foot of the per- 
pendicular of the plane ABC. 

where 

Z2=a 
s 

’ du 
1 

0 [q(u) + h2] l” 
(A.18) 

and 

I3 = ah2 I,’ du 
1 

du)Cq(u) + A21 1’2’ 
(A.19) 

The integration of Z,, Z2, and I3 can be carried out in an 
elementary way. As a result, we obtain the following 
formula: 

I - AQRG = , R; I log 
R,.Rc+ lRel l&I 

-QR.QG+ IQRl IQPI 

+ h arc tan ~R,.&(h- IRPI) 
CT’ IRp I+ h(R, . RG)’ 

+ h arc tan c~Q,.Qc(h- IQPI) tA.20J 
c2 IQpl +h(QR. QG)‘. 

If the field point P is on the plane of AABC, P coincides with 



CAPACITY CALCULATION BY SCM 113 

G. This case corresponds to the limit of h --+ 0, where Thus the leading part of the error in Eq. (B.5) is 
Eq. (A.20) reduces to 

&E Icp(n)-CI 

I -Llog R,-R,+ lRQl l&l 
dQRp- (R,( -QR.f’p+ IQRI IQPI’ 

(A.21) 
03.8) 

APPENDIX B. DERIVATION OF C, 

B. 1. Extrapolation by Polynomials 

The true form of g(n) is not known in general. Empirically, 
however, it can often be approximated by a certain power of 
l/n. If g(n) = y/n” with x > k, then 

As in Ref. [S], we take the extrapolation function of 
polynomial of kth degree of (l/n): Y I-(x) 

‘= k?T(x-k)n” ii +CJ (-+) (B.9) 

C(n)=C,+ C uj$ 
i= 1 

(B.1) and 

Because Ak+ ‘(nkC,) = Ak+ ‘(n”g(n)) 
dk dnk nk = Aknk = k! 

and 

d’;nk-‘=A”n’-‘=o for l<i<k, (B.3) 
dn” 

Thus we have the estimation of error: 
by the following the terms in Eq. (B.l) with i < k vanish 

operation: 

=Y(-l)kfl ;i-:‘;;-& (B.lO) 

1 n 
Ex:k! x - Ak + ‘(nkC,) . (B.11) 

For other forms of g(n), see Ref. [S], where the effects of the 
(B.4) round-off error are also discussed. 

By substituting C,, C,- i, . . . . C,- k for C(n), C(n - l), . . . . 
B.2. Extrapolation with Logarithmic Terms 

C(n - k) and neglecting 0( l/nk+‘), we have We take the following extrapolation function: 

C 5. z C:)(n) = k Ak(nkC,). C(n)= C, + f CY~-$+ 2 biF. (B.12) 
i= I i= 1 

In order to estimate the error in Cc)(n), we introduce the 
error function g(n): 

Using the relation between difference and differentiation, 

C,=C+ i q+g(n). 
i=ln 

Then, C g)(n), calculated by Eq. (BS), becomes 

Cz’(n)=C+AAk(nkg(n)) 

(B.6) 

+k(3k+ 1) dk+2 
24 pf(n)+ ..., (B.13) 

we obtain from Eqs. (B.2), (B.3), and 

= C+A-$ (nkg(n)) 

t0 

dk 
-nk-‘logn=(-l)‘-’ (k-z’)! (i-l)!; (B.14) 
dnk 

(B.7) the following formula: 
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l Ak(nkAk(nkC(n))) (k!)2 

n$+(n)))+O(-&) 

=c,+o -& 
i > 

(B.15) 

Substituting C,, C,-, , . . . . C,- Zk for C(n), C(n - 1 ), . . . . 
C(n - 2k) and neglecting 0( l/nk + ‘), we obtain 

C 

The error g(n), where 

(B.17) 

is estimated as follows: Including g(n), the quantity 
obtained by differentiation of Eq. (B.16) becomes 

(B.18) 

where we have assumed that the effect of approximation of 
differentiation by difference is renormalized in g(n) in 
Eq. (B.18). Thus the error becomes 

nk 2 (n”g(n)) . 
)I 

(B.19) 

If g(n) can be approximated by a power y/nX, we have 

ES ICE’(n)-Cl 

and 

di”(n*d*(n*C,,))z$ 

T(x)T(x+ 1) 1 =- 
’ 

- (B.21) 
T(x-k)’ n”+” 

Thus 

1 
E=(k!)Z x 

p Ak+‘(nkAk(nkC,)) . (B.22) 

B.3. “The Logarithmic Syndrome” 

Let us consider the case in which a function with 
logarithmic terms is approximated by a polynomial. 

Assuming that the calculated capacity C, can be expanded 
as 

(B.23) 

Note that log n cannot be expanded in terms of (l/n). The 
extrapolated capacity C z’(n) given by Eq. (5) which is 
obtained by assuming a polynomial of kth degree is 

C$)(n)=C,+ f ~~(-1)~ 
i=k+ 1 

(B.24) 

If logarithmic terms are absent (/Ii = 0), then C z)(n) is of 
the order of O(l/nk+ I). In this case, convergence with 
n + co becomes faster with increasing k. If /I, # 0 at some 
m, on the other hand, C:)(n) is of the order of O(l/nm) 
when k > m. Therefore, the gradient of log d C z)(n) stays 
- (m + 1 ), even when k is increased. In other words, the 
syndrome that the gradient of log dC g’(n) does not get 
steeper with increasing k suggests the necessity of 
logarithmic terms in the extrapolation function. 

APPENDIX C. CAPACITY CALCULATION 
BETWEEN A PRISM AND A CYLINDER 

In two-dimensional systems involving two conductors 
which do not contact each other, the capacity (per unit 
length) is defined as the charge (per unit length) on one of 
the conductors divided by its potential, relative to the other. 

Since the system in the present study has m-fold sym- 
metry, we first divide this system into m equivalent parts, 
then we divide each part into 2n smaller parts by a common 
angle 0 = 2rr/(2mn). Using complex numbers for notation, 
we have 

II-1 

Pob;cd= - c 
f=o 21% 

-log IP,,- (S,,+S,7,)e’/“l, (C.1) 

where P,, and S,, represent the coordinates of field and 
source points, respectively, and u = 2rc/m. These points are 
shown in Fig. 7. For field points, we have 

p,,= 
r, sin ueibO 

sin(M)( 1 - cos g) + cos(M?) sin ~1’ (C.2) 

PZb = r,eibe; (C.3) 
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while, for the source points, we have REFERENCES 
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2d 2 
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